yello wellipse 4 glider

John Skinner

 

This is a theoretical analysis of the aerodynamics of the HQW 2.0-8 profile as it applies to the Jaro Muller Ellipse 4.

I thought it might be useful to a friend of mine who has one of these gliders and is in the process of optimizing performance. I have utilized a similar approach to get an idea of flap positions that are appropriate for my Nyx and Caracho 3000 and have found that the theory and practice agree pretty closely.

The document started out as a note with a few screen dumps from profili. I decided though that I should do a bit better and take it to a standard to allow a wider audience. I don’t have a degree in aerodynamics, all that I have learned in this subject comes from the experiences of 25 years in aeromodelling, therefore any guidance, comments, criticisms and suggestions on the following would be gratefully appreciated and help my understanding.


The Ellipse 4 is an F3b/F3j model, and the HQW 2.0-8 is designed for variable camber. The analysis revolves around the F3b triple task of speed, distance and duration. The appropriate flap settings for each of these tasks is discussed, and in addition an analysis of turn performance in speed, and launch performance. Note that when I refer to flap I mean raising or lowering the whole trailing edge, flaps and ailerons, to create variable camber on the wing.

The material is not overly complicated, and I try to explain some of the concepts involved along the way. There are plenty of references available on the subject, but I would recommend Martin Simons’ book  “Model Aircraft Aerodynamics

The aerodynamic calculations utilized Profili 2.19 Pro at www.profili2.com  and Excel spreadsheets. The dimensions for the Ellipse 4 can be found at www.aerodesign.de  or Jaro Muller Ellipse 4.

 

Basic Assumptions:
Ellipse 4 wing section is HQW 2.0-8, wing area 65.7 dm². Dry weight is 2150g. Other estimates include: Root chord 240mm, MAC 210mm, flap hinge at 24% on the bottom surface, with capacity to add another 600g ballast.

3 views of Ellipse 4

 


What flap setting to use for speed?
In speed, the F3b glider dives for about 3 – 5 seconds to gain speed. During this dive the wing lift is zero, so aerofoil CL=0. The glider then completes 4 x 150m laps with three 180° turns. Assuming 15m diameter turns with their apex at 150m, distance traveled is 625m (of which 71m or 11% of the total distance is turning). For a 13.5 second run, average speed is 166 km/hr.  This speed is a good approximation – as we all know, it is difficult to fly the perfect course, so longer distances will mean longer times!

Assuming a speed of 166 km/hr, Reynolds number at the wing root is 750,000, weight is 2750g (Ballasted). CL is 0.03.

In speed, low drag at CL 0 or slightly above is important for good acceleration in the dive, high straight-line speed and energy retention when flying the legs between bases.

Let’s look at some polars drawn by Profili:

polar 1

Polar 1: HQW 2.0-8, Re 750,000, Flap at -4°, -2°, 0°

  • Green curve is the unflapped aerofoil. The drag increases for CL values less than 0.3, giving rise to excessive drag in the acceleration dive and flying the speed laps at high speed.

  • Red curve (-2° flap) shows that reflexing the flap by this amount lowers the point at which drag increases to CL 0.2. We have still not reached a low drag state at CL 0.

  • Black curve shows that -4° flap provides low drag at CL 0, satisfying our criteria for fast level or diving flight. This is a larger deflection than I thought would have been necessary, but -4° flap setting appears to be enough to ensure low drag at CL 0.


What flap setting is needed to help with turns at speed, and what is the importance of snap flap?

To turn, the aerofoil needs to be able to produce high CL with low drag. To appreciate the importance of high CL performance, consider the table below:

Turn Diameter

(m)

Apparent Model weight

(kg)

Wing Lift coefficient


(CL)

Time spent in turns


(s)

7.5

169.48

1.94

0.77

10

127.11

1.45

1.02

13

97.78

1.12

1.33

15

84.74

0.97

1.53

20

63.56

0.73

2.04

25

50.84

0.58

2.55

30

42.37

0.48

3.07

40

31.78

0.36

4.09

Notes: Assumes that turn is in the horizontal plane, Model speed 166 km/hr, weight 2750g, wing area 65.7dm². The apparent weight is related to the model mass, velocity and turn diameter using the centripetal acceleration formula F=mv²/r. The CL required to support this mass can be calculated using the lift formula (see appendix). Time spent in the turn is a result of the distance traveled 3/2 x pi x D and estimated constant 166 km/hr airspeed.

Tight turn diameter is important for fast times, for example, everything else equal, the difference between 15m and 25m diameter turns is about 1.3 seconds over the whole course! We need an aerofoil that is able to give high CL.

We can plot the turn diameter versus the CL required:

plot for turn diameter vs CL

The CL requirement of the aerofoil rapidly increases at tighter turn diameters. There is a diminishing return for the time saved in the turn, especially when we put constraints on the maximum CL an aerofoil can give. Fast airfoils have problems giving high lift at low drag - even flapped we could not expect much more than around CL 1.1, indicating a best turn diameter at around 13m, time for three turns is 1.3 seconds.

We haven’t yet taken into account the drag the aerofoil gives at these high CL values, and therefore slowing the glider in the turn, then exiting for the next lap at a lower speed. Intuitively, low drag at high CL is important as well.

Looking now at the Profili polars:

Polar 2: HQW 2.0-8, Re 750,000, Flap at -4°, 0°, +2° and +5°

  • +5° flap (orange curve) gives better performance between CL 0.7 – 1.1 than the +2° Flap case (blue curve). This means less drag in turns at 13 - 20m turn diameter for +5° flap.

  • Between CL 0.55 – 0.7, +2° flap is better (blue curve has lower drag). This translates to diameters of 20 – 26m.

  • Lowest drag from CL 0.2 – 0.55 is from the 0° flap setting(green curve is better for diameters between 26 - >>70m )

  • Between CL 0 – 0.2 black curve is lower drag, -4° is better. Flat level flight at high speed only!

In practice, the turn is started by a pull of up elevator to increase CL. More elevator, the tighter the turn and the higher the CL. All of this implies that the movement of flap with the pull of up elevator stick should be geared correctly. I have not considered the trade-off between turn diameter and speed loss (can anyone help with this?)

The best flap setting for turning is dependant on the CL range that we are requiring from the aerofoil.


Summary for speed:

  • Highest speed in the acceleration phase the aerofoil should have a -4° flap setting to minimize drag at CL 0.
  • Lower turn diameter lowers the time spent in the turn, but also exponentially increases the CL requirement.
  • Using the correct flap setting for the turn diameter (shaded in yellow below) will reduce the drag experienced during the turn.

Turn Diameter

(m)

Apparent Model weight

(kg)

CL

Time spent in 3 turns

(s)

Drag coefficient for profile (CD)

Flap=0°

Drag coefficient for profile (CD)

Flap=+2°

Drag coefficient for profile (CD)


Flap=+5°

7.5

178

2.10

0.77

Stall

Stall

Stall

10

134

1.57

1.02

Stall

Stall

Stall

14

96

1.12

1.43

Stall

Stall

.0214

15

89

1.05

1.53

Stall

Stall

.0143

20

67

0.79

2.04

.0093

.0080

.0069

25

54

0.62

2.55

.0061

.0053

.0061

30

45

0.52

3.07

.0049

.0051

.0061

40

34

0.39

4.09

.0048

.0051

.0061

As a result of drag, there is a trade-off between turn diameter and speed loss.

 


What flap setting to use for Distance?

For distance, the model is flown on the same course as in speed, except that the glider must complete as many laps as possible in 4 minutes. In practice, the model is rarely flown at a constant speed within one flight, depending on the air, the number of laps can change radically. Assuming 2600g weight:

  • In good air at 30 lap constant pace, speed is around 75 km/hr and Reynolds number is 300,000, CL is around 0.15. In reality, a 30 lap distance run will have a number of legs where the speed will be much higher, where speed flap settings would be more appropriate.
  • For 20 laps, speed is around 52 km/hr, Reynolds number 210000, CL is around 0.31
  • In bad air say 13 laps, speed is around 35/km per hour and Reynolds number around 140000. CL is 0.67.

For flying the number of legs shown above at constant speed, we are seeking the flap setting that gives minimum drag at around the range of  CL  0.15 – 0.67.

Looking again at Profili, here’s the polar for 30 lap pace:



Polar3:
HQW 2.0-8, Re300,000, Flap at -2, +0°
  • At 30 lap pace, CL 0.15, the flap should be reflexed by 2° (pink curve)

At 20 lap pace the airfoil polar looks like this:

Polar4: HQW 2.0-8, Re200,000, Flap at -2, +0°

  • At 20 lap pace, CL 0.31, the -2° reflex is still better (light blue curve)

And now the polar for 13 laps:

Polar5: HQW 2.0-8, Re 150,000, Flap at 0, +2°

  • At 13 lap pace CL 0.67, the unflapped aerofoil provides the best performance (gold curve).

 

Summary for Distance:

  • At 30 lap pace, and also at 20 lap pace, the -2° flap setting appears to offer the lowest drag. From the consideration of speed performance, more flap will be needed as the speed rises above 75km/hr. For example, the best flap setting for 166km/hr flight is -4°

  • At 13 lap pace the uncambered section works best.

  • From polar 4, the changeover point between -2° and 0° flap is estimated to be at Cl 0.45, or 42km/hr, equivalent to 16 laps in 4 minutes.


What is the best setting for thermal?

For still air performance, we need low drag at high CL. The wing loading, and aspect ratio are important as well.

Thermal speeds are generally just above the stall speed, although with modern sections sometimes a little faster. Let’s assume a speed of around 27km/hr, so Reynolds number is around 110,000 at the mean wing chord. Weight is assumed to be 2200g, so CL required is 0.92.

Applying Profili again:

Polar6:HQW 2.0-8, Re 110,000, Flap at 0, +2° and +5°

  • At 27 km/hr (CL=0.92) +5° flap appears optimum. The performance peak is quite sharp. We are very close to the stall !
  • At CL 0.80, (29km/hr) Performance is best with +2° flap.
  • The unflapped aerofoil is the best option when CL values less than 0.75 are required (30 km/hr)

These are all very low speeds; any slower and the model stalls! The polar curve is very sharp at these high CL values, with the “sharpness” increasing as flap is deflected further. The speed difference between optimum flap settings is very close and therefore probably unusable to minimize sink rate as any small variation in speed either slower or faster will quickly increase the drag.

The best may well be to run 0° flap with elevator to flap coupling to maintain low drag during the thermal turn. This is speculation until we look at how the Ellipse 4 airframe interacts with the HQW2.0/8. We need to look at the aircraft polar.

See excel spreadsheet - attachment 2.

Simply put, flight speed relates to the Reynolds number. With flight speed and wing loading we can calculate the wing lift coefficient, CL. The profile drag coefficient of the aerofoil for the required CL can be read off the Profili polar on the curve appropriate for the required Reynolds number. The induced drag coefficient is calculated based on the aspect ratio and CL. The parasitic drag coefficient was estimated to be a constant 0.005. These three drag coefficients are summed to give a total drag. If we divide the CL by the total drag we have the L/D ratio and can now calculate the sink speed.

For the analysis, I have also assumed that the optimum flap setting is used for the different flight speeds:

Flap Deflection

+2°

-2°

-2°

-2°

-3°

-4°

Km/hr

27.37

31.11

37.33

49.77

62.21

87.10

124.42

186.64

Reynolds No x103

110.00

125.00

150.00

200.00

250.00

350.00

500.00

750.00

CL

0.92

0.72

0.50

0.28

0.18

0.09

0.04

0.02

CDprofile

0.0209

0.0121

0.0113

0.0088

0.0078

0.0064

0.0058

0.0053

CDi

0.0182

0.0109

0.0053

0.0017

0.0007

0.0002

0.0000

0.0000

CDpara

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

CDtot

0.0396

0.0235

0.0171

0.0110

0.0090

0.0071

0.0063

0.0058

L/D

23.38

30.49

29.17

25.52

19.94

12.91

7.06

3.43

Sink Sped m/s

-0.33

-0.28

-0.36

-0.54

-0.87

-1.87

-4.90

-15.14

Notes: Model weight is assumed to be 2200 g, CD profile is chosen from the best performing flap deflection at the particular CL and Reynolds number. CDi is the induced drag. Cdpara is the parasitic drag(fuselage etc)

The aircraft sinking speed polar is shown below:

  • The flight speed to attain optimum minimum sink is about 31 km/hr with the unflapped aerofoil. Minimum sink rate is around 0.28 m/s, indicating that 10 minute still air duration is possible from a 220m launch.

The aircraft polar for L/D is also shown below:

 

Summary for Thermal:

  • Best flap setting appears to be 0° for flying at minimum sink.
  • The best minimum sink speed is -0.28 m/s at 31 km/hr
  • Still air times of 10 minutes are possible from an average 220 m launch
  • There may be some benefit in using elevator to flap coupling to maintain drag efficiency at higher CL values when turning.

 


What is the best flap setting for launch?

There are essentially two phases to launch – the climb on the line which requires very high CL to produce line tension and store elastic energy before phase two, the conversion of elastic energy into velocity and height (the “ping”). The latter stage requires the same performance parameters as speed, so to set your model up to "ping" well, have a look at the discussion on speed setup.

Here we will consider the climbing phase only. Assuming we fly in a 200m arc around the turnaround pulley and arrive above the turnaround pulley in 8 seconds, speed is around 135 km/hr (Reynolds Number 550,000). The towline tension makes the model appear heavier, so the wings have to produce high CL to generate this tension. The higher the tension the better, providing the line retrieval is not too high.


Using Profili again:

Polar8: HWQ 2.0-8, Re 120,000, Flap at +2, +5°, +7.5°, +10°, +15° and 20°

  • CL max is around 1.5 for the +20° case, but there is a large drag increase to extract so much lift from the aerofoil. There is probably a trade-off between towline tension and drag, ie between CL and CD

To assess the tradeoff, Excel spreadsheet calculations similar to those used for the thermal analysis can be used to look at the model behavior on the launch - attachment 3. In the calculation, varying the towline tension is the same as increasing the model weight, and the sinking speed is analogous to the rate of winch line retrieval:

Towline tension (kg)

20

40

50

60

70

80

87

Flap Deflection

+2°

+5°

+7.5°

+10°

+10°

+15°

+20°

Flight Speed Km/hr

136.87

136.87

136.87

136.87

136.87

136.87

136.87

Reynolds No x103

550.00

550.00

550.00

550.00

550.00

550.00

550.00

Cl

0.37

0.71

0.88

1.05

1.21

1.38

1.50

Cd

0.01

0.0069

0.0073

0.0148

0.0224

0.0327

0.0424

Cdi

0.0030

0.0107

0.0164

0.0232

0.0313

0.0406

0.0478

Cdp

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

Cdtot

0.0094

0.0181

0.0242

0.0385

0.0542

0.0738

0.0907

L/D

39.89

39.22

36.33

27.15

22.40

18.74

16.54

Line Retrieval (m/s)

-0.95

-0.97

-1.05

-1.40

-1.70

-2.03

-2.30

Notes: Model weight is assumed to be 2200 g, CD is chosen from the best performing flap deflection at the particular CL and Reynolds number. CDi is the induced drag. Cdp is the parasitic drag(fuselage etc)


The values for line retrieval can be plotted against the towline tension:

There is a good trade-off between line retrieval and tension below about 50kg tension but above 50kg tension, line retrieval increases.

  • There is little point in trying to go for tension above 50 kg or +7.5° flap deflection during the climbing phase.

There may be some benefit to using a heavier flap setting at the very start of the launch as the high drag ensures that the model does not “over-fly” the line, however this aspect has not been included in the analysis.

 

Summary for Launch:

  • Use a maximum of +7.5° flap for launch
  • Use speed mode for the ping.


Conclusions:

The theoretical analysis has identified the best flap settings for the various F3b flight modes for the Ellipse 4, and gives a guide on how the real glider may behave with different flap applications. The actual numerical prediction of performance eg minimum sink time, best L/D etc. may not be entirely accurate when compared to the real world, however the insight that this analysis provides on flap setting should prove correct.

The intention is that this analysis provides a starting point for setting up the model.

The HQW 2.0-8 is a variable camber aerofoil (W in HQW is for Wolbklappe – German for flap). This analysis shows the importance of using the correct camber for each of the flight tasks. The flap deflections serve to broaden the low drag bucket of the polar. This can be shown with a plot of the glider L/D ratio with curves for the best flap setting for each flight speed versus the unflapped state or +2° flap. The coloured bar at the top of the graph shows the recommended flap setting for various speed ranges:

  • The best L/D ratios are achieved by flying the model at 42 km/hr or higher using  -2° flap. Larger negative flap settings are useful for high speed.
  • To turn tight diameter turns in speed, elevator to flap mix (snap flap) depressing the flaps up to +5° may be beneficial.

The minimum sinking speed performance of the model can be summarized in the following plot:

  • For thermal, trim the model to fly at around 31 km/hr with 0° flap.
  • To move smartly between thermals -2° flap is recommended.
  • Positive flap is only recommended for turning in tight lift or as snap flap.
  • For launch, +7.5° flap is recommended.

Appendix

1) Excel Spreadsheet to calculate CL, turn diameters and times in turn

Weight

2.9 kg

 

mass (m)

0.32 N

 
speed  s=

166 km/hr =

46.11 m/s

area A=

64 dm² =

6.89ft²

 
 

Turn Diameter D (m)

weight (kg)         w = mv²/D/2

weight lb     Wlb=w/2.2

speed ft/s S=3.2808 x s

apparent loading (lb/ft2)    L=Wlb/A

Cl =  L / (S/29)²

time in turn (x3) = 3 x pi x D/2/s

 

7.5

178.73

393.20

151.28

57.08

2.10

0.77

10

134.05

294.90

151.28

42.81

1.57

1.02

15

89.36

196.60

151.28

28.54

1.05

1.53

20

67.02

147.45

151.28

21.40

0.79

2.04

25

53.62

117.96

151.28

17.12

0.63

2.55

30

44.68

98.30

151.28

14.27

0.52

3.07

40

33.51

73.72

151.28

10.70

0.39

4.09


2) Excel Spreadsheet to calculate CL, Reynolds number, L/D ratio and sink speed. Example for unballasted, flapped HQW2.0-8

Ellipse 4

 

metric unit

Imperial unit

SPAN

3150.00 mm

10.33 ft

AREA

65.70 dm2

7.07 ft2

MAC

210.00 mm

0.69 ft

Aspect Ratio

15.00

15.00

Mass

2200.00 g

4.84 lb

Wing Loading

33.49 g/dm2

0.68 lb/ft2

 

Flap Deflection

+2°

-2°

-2°

-2°

-3°

-4°

Speed (ft/s)

24.95

28.35

34.02

45.36

56.70

79.38

113.39

170.09

Km/hr

27.37

31.11

37.33

49.77

62.21

87.10

124.42

186.64

Reynolds No

110.00

125.00

150.00

200.00

250.00

350.00

500.00

750.00

Cl

0.92

0.72

0.50

0.28

0.18

0.09

0.04

0.02

Cd profile

0.0209

0.0121

0.0113

0.0088

0.0078

0.0064

0.0058

0.0053

Cdi

0.0182

0.0109

0.0053

0.0017

0.0007

0.0002

0.0000

0.0000

Cd para

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

Cdtot

0.0396

0.0235

0.0171

0.0110

0.0090

0.0071

0.0063

0.0058

L/D

23.38

30.49

29.17

25.52

19.94

12.91

7.06

3.43

Sink (ft/s)

-1.07

-0.93

-1.17

-1.78

-2.84

-6.15

-16.07

-49.66

m/s

-0.33

-0.28

-0.36

-0.54

-0.87

-1.87

-4.90

-15.14

220 m time (of 10 min)

0.87

1.00

0.80

0.52

0.33

0.15

0.06

0.02

power factor

22.5

25.8

20.6

13.5

8.4

3.9

1.5

0.5

1/PF

0.04

0.04

0.05

0.07

0.12

0.26

0.67

2.07

sink by PF method

0.33

0.28

0.36

0.54

0.87

1.88

4.90

15.16

Profili Polars (below) at the Reynolds numbers listed in the spreadsheet above used to determine CD.


3) Winch line retrieval for various towline tensions. Optimum flap setting used for each value of tension.

Ellipse 4 Launch

 

metric unit

Imperial unit

SPAN

3150.00 mm

10.33 ft

AREA

65.70 dm2

7.07 ft2

MAC

210.00 mm

0.69 ft

Aspect Ratio

15.00

15.00

Mass

2200.00 g

4.84 lb

Wing Loading

33.49 g/dm2

0.68 lb/ft2

 
 

Towline tension (kg)

20

40

50

60

70

80

87

"wing loading"

6.91

13.13

16.24

19.35

22.46

25.57

27.75

Flap Deflection

+2°

+5°

+7.5°

+10°

+10°

+15°

+20°

Speed (ft/s)

124.73

124.73

124.73

124.73

124.73

124.73

124.73

Flight Speed Km/hr

136.87

136.87

136.87

136.87

136.87

136.87

136.87

Reynolds No

550.00

550.00

550.00

550.00

550.00

550.00

550.00

Cl

0.37

0.71

0.88

1.05

1.21

1.38

1.50

Cd

0.01

0.0069

0.0073

0.0148

0.0224

0.0327

0.0424

Cdi

0.0030

0.0107

0.0164

0.0232

0.0313

0.0406

0.0478

Cdp

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

Cdtot

0.0094

0.0181

0.0242

0.0385

0.0542

0.0738

0.0907

L/D

39.89

39.22

36.33

27.15

22.40

18.74

16.54

Sink (ft/s)

-3.13

-3.18

-3.43

-4.59

-5.57

-6.66

-7.54

m/s

-0.95

-0.97

-1.05

-1.40

-1.70

-2.03

-2.30

Line Retrieval (m/s)

-0.95

-0.97

-1.05

-1.40

-1.70

-2.03

-2.30

power factor

24.4

33.0

34.0

27.8

24.7

22.0

20.3

 

breta furio landed